Multiple-byte units
Value Metric
1000 kB kilobyte
10002 MB megabyte
10003 GB gigabyte
10004 TB terabyte
10005 PB petabyte
10006 EB exabyte
10007 ZB zettabyte
10008 YB yottabyte
Value IEC Memory
1024 KiB kibibyte KB kilobyte
10242 MiB mebibyte MB megabyte
10243 GiB gibibyte GB gigabyte
10244 TiB tebibyte TB terabyte
10245 PiB pebibyte
10246 EiB exbibyte
10247 ZiB zebibyte
10248 YiB yobibyte

The gigabyte (/ˈɡɪɡəbt, ˈɪɡə-/)[1] is a multiple of the unit byte for digital information. The prefix giga means 109 in the International System of Units (SI). Therefore, one gigabyte is one billion bytes. The unit symbol for the gigabyte is GB.

This definition is used in all contexts of science, engineering, business, and many areas of computing, including hard drive, solid state drive, and tape capacities, as well as data transmission speeds. However, the term is also used in some fields of computer science and information technology to denote 1073741824 (10243 or 230) bytes, particularly for sizes of RAM. The use of gigabyte may thus be ambiguous. Hard disk capacities are described and marketed by drive manufacturers using the standard metric definition of the gigabyte, but when a 400 GB drive's capacity is displayed by, for example, Microsoft Windows, it is reported as 372 GB, using a binary interpretation. To address this ambiguity, the International System of Quantities standardizes the binary prefixes which denote a series of integer powers of 1024. With these prefixes, a memory module that is labeled as having the size "1GB" has one gibibyte (1GiB) of storage capacity. Using the ISQ definitions, the "372 GB" reported for the hard drive is actually 372 GiB (400 GB).



This 2.5 inch hard drive can hold 500 GB (i.e., 500 billion bytes) of data.

The term gigabyte has a standard definition of 10003 bytes, as well as a discouraged meaning of 10243 bytes. The latter binary usage originated as compromise technical jargon for byte multiples that needed to be expressed in a power of 2, but lacked a convenient name. As 1024 (210) is approximately 1000 (103), roughly corresponding to SI multiples, it was used for binary multiples as well.

In 1998 the International Electrotechnical Commission (IEC) published standards for binary prefixes, requiring that the gigabyte strictly denote 10003 bytes and gibibyte denote 10243 bytes. By the end of 2007, the IEC Standard had been adopted by the IEEE, EU, and NIST, and in 2009 it was incorporated in the International System of Quantities. Nevertheless, the term gigabyte continues to be widely used with the following two different meanings:

Base 10 (decimal)

  • 1 GB = 1000000000 bytes (= 10003 B = 109 B)

Based on powers of 10, this definition uses the prefix giga- as defined in the International System of Units (SI). This is the recommended definition by the International Electrotechnical Commission (IEC).[2] This definition is used in networking contexts and most storage media, particularly hard drives, flash-based storage,[3][4][5] and DVDs, and is also consistent with the other uses of the SI prefix in computing, such as CPU clock speeds or measures of performance. The file manager of Mac OS X version 10.6 and later versions are a notable example of this usage in software, which report files sizes in decimal units.[6]

Base 2 (binary)

  • 1 GiB = 1073741824 bytes (= 10243 B = 230 B).

The binary definition uses powers of the base 2, as does the architectural principle of binary computers. This usage is widely promulgated by some operating systems, such as Microsoft Windows in reference to computer memory (e.g., RAM). This definition is synonymous with the unambiguous unit gibibyte.

Consumer confusion

Since the first disk drive, the IBM 350, disk drive manufacturers expressed hard drive capacities using decimal prefixes. With the advent of gigabyte-range drive capacities, manufacturers based most consumer hard drive capacities in certain size classes expressed in decimal gigabytes, such as "500 GB". The exact capacity of a given drive model is usually slightly larger than the class designation. Practically all manufacturers of hard disk drives and flash-memory disk devices[3][4] continue to define one gigabyte as 1000000000bytes, which is displayed on the packaging. Some operating systems such as OS X[7] express hard drive capacity or file size using decimal multipliers, while others such as Microsoft Windows report size using binary multipliers. This discrepancy causes confusion, as a disk with an advertised capacity of, for example, 400 GB (meaning 400000000000bytes, equal to 372 GiB) might be reported by the operating system as "372 GB".

The JEDEC memory standards use IEEE 100 nomenclature which quote the gigabyte as 1073741824bytes (230 bytes).[8]

The difference between units based on decimal and binary prefixes increases as a semi-logarithmic (linear-log) function—for example, the decimal kilobyte value is nearly 98% of the kibibyte, a megabyte is under 96% of a mebibyte, and a gigabyte is just over 93% of a gibibyte value. This means that a 300 GB (279 GiB) hard disk might be indicated variously as "300 GB", "279 GB" or "279 GiB", depending on the operating system. As storage sizes increase and larger units are used, these differences become more pronounced.

US lawsuits

The most recent lawsuits arising from alleged consumer confusion over the binary and decimal definitions used for "gigabyte" have ended in favor of the manufacturers, with courts holding that the legal definition of gigabyte or GB is 1 GB = 1,000,000,000 (109) bytes (the decimal definition) rather than the binary definition (230) for commercial transactions. Specifically, the courts held that "the U.S. Congress has deemed the decimal definition of gigabyte to be the 'preferred' one for the purposes of 'U.S. trade and commerce' .... The California Legislature has likewise adopted the decimal system for all 'transactions in this state'."[9]

Earlier lawsuits had ended in settlement with no court ruling on the question, such as a lawsuit against drive manufacturer Western Digital.[10][11] Western Digital settled the challenge and added explicit disclaimers to products that the usable capacity may differ from the advertised capacity.[10] Seagate was sued on similar grounds and also settled.[10][12]

Other contexts

Because of their physical design, the capacity of modern computer random access memory devices, such as DIMM modules, is always a multiple of a power of 1024. It is thus convenient to use prefixes denoting powers of 1024, known as binary prefixes, in describing them. For example, a memory capacity of 1073741824bytes is conveniently expressed as 1 GiB rather than as 1.074 GB. The former specification is, however, often quoted as "1 GB" when applied to random access memory.[13]

Software allocates memory in varying degrees of granularity as needed to fulfill data structure requirements and binary multiples are usually not required. Other computer capacities and rates, like storage hardware size, data transfer rates, clock speeds, operations per second, etc., do not depend on an inherent base, and are usually presented in decimal units. For example, the manufacturer of a "300 GB" hard drive is claiming a capacity of 300000000000bytes, not 300 × 10243 (which would be 322122547200) bytes.

Examples of gigabyte-sized storage

  • One hour of SDTV video at 2.2 Mbit/s is approximately 1 GB.
  • Seven minutes of HDTV video at 19.39 Mbit/s is approximately 1 GB.
  • 114 minutes of uncompressed CD-quality audio at 1.4 Mbit/s is approximately 1 GB.
  • A single layer DVD+R disc can hold about 4.7 GB.
  • A dual-layered DVD+R disc can hold about 8.5 GB.
  • A single layer Blu-ray can hold about 25 GB.
  • A dual-layered Blu-ray can hold about 50 GB.

Unicode character

The "gigabyte" symbol is encoded by Unicode at code point U+3387 SQUARE GB ❱.[14]

See also


  1. ^ The prefix giga may be pronounced two ways. Gigabyte - Definition and More from the Free Merriam-Webster Dictionary
  2. ^ Prefixes for binary multiples
  3. ^ a b SanDisk USB Flash Drive Archived 13 May 2008 at the Wayback Machine "Note: 1 megabyte (MB) = 1 million bytes; 1 gigabyte (GB) = 1 billion bytes."
  4. ^ a b Storage Chart "Megabyte (MB) = 1,000,000 bytes; 1 Gigabyte (GB) = 1,000,000,000 bytes; 1TB = 1,000,000,000,000 bytes"
  5. ^ [1]
  6. ^ "How Mac OS X reports drive capacity" . Apple Inc. 27 August 2009. Retrieved 16 October 2009.
  7. ^ "How OS X and iOS report storage capacity - Apple Support" . Retrieved 29 June 2016.
  8. ^ JEDEC Solid State Technology Association (December 2002). "Terms, Definitions, and Letter Symbols for Microcomputers, Microprocessors, and Memory Integrated Circuits" (PDF). Jesd 100B.01.
  9. ^ "Order Granting Motion to Dismiss" (PDF). United States District Court. Retrieved 24 January 2020.
  10. ^ a b c Mook, Nate (28 June 2006). "Western Digital Settles Capacity Suit" . betanews. Retrieved 30 March 2009.
  11. ^ Baskin, Scott D. (1 February 2006). "Defendant Western Digital Corporation's Brief in Support of Plaintiff's Motion for Preliminary Approval" . Orin Safier v. Western Digital Corporation. Western Digital Corporation. Retrieved 30 March 2009.
  12. ^ Judge, Peter (26 October 2007). "Seagate pays out over gigabyte definition" . ZDNet. Retrieved 16 September 2014.
  13. ^ Percival, Colin. "Why is 1 GB equal to 10^9 bytes instead of 2^30?" . Retrieved 1 November 2015.
  14. ^ Unicode Consortium (2019). "The Unicode Standard 12.0 – CJK Compatibility ❰ Range: 3300—33FF ❱" (PDF). Retrieved 24 May 2019.

External links


Information as of: 09.08.2021 03:35:49 CEST

Source: Wikipedia (Authors [History])    License of the text: CC-BY-SA-3.0. Creators and licenses of the individual images and media can either be found in the caption or can be displayed by clicking on the image.

Changes: Design elements were rewritten. Wikipedia specific links (like "Redlink", "Edit-Links"), maps, niavgation boxes were removed. Also some templates. Icons have been replaced by other icons or removed. External links have received an additional icon.

Please note: Because the given content is automatically taken from Wikipedia at the given point of time, a manual verification was and is not possible. Therefore does not guarantee the accuracy and actuality of the acquired content. If there is an Information which is wrong at the moment or has an inaccurate display please feel free to contact us: email.
See also: Legal Notice & Privacy policy.