WikiFox

Duaal veelvlak



In de ruimtemeetkunde worden twee typen veelvlakken elkaars duale veelvlakken genoemd, als er een tweeplaatsige relatie tussen beide veelvlakken is, waarin de zijvlakken van het eerste veelvlak overeenkomen met de hoekpunten van het andere veelvlak en omgekeerd. Daarbij worden twee veelvlakken slechts van hetzelfde type genoemd, wanneer ze gelijkvormig zijn. De twee ruimtelijke figuren zijn bijgevolg erg verwant met elkaar. Een voorbeeld is de kubus met als duaal veelvlak het regelmatige achtvlak.

Ruimtelijke voorstelling van de dualiteit tussen de kubus en de octaëder.

Het viervlak en de piramiden met een regelmatige veelhoek als grondvlak zijn het duale veelvlak van zichzelf. Zij hebben de eigenschap dat ze evenveel hoekpunten als zijvlakken bevatten.

De vier andere regelmatige veelvlakken dan het viervlak vormen twee paren duale veelvlakken. De vier kepler-poinsot-lichamen vormen ook twee paren duale veelvlakken. De catalanlichamen zijn per definitie de duale veelvlakken van de archimedische lichamen. Het duale veelvlak van een recht prisma met een regelmatige veelhoek als grondvlak is een bipiramide.

Een duaal veelvlak \({\displaystyle D}\) van een gegeven veelvlak \({\displaystyle A}\) kan worden gevormd door binnen ieder zijvlak van \({\displaystyle A}\) een punt te kiezen als hoekpunt van \({\displaystyle D}\), voor iedere ribbe van \({\displaystyle D}\) een verbindingslijn of -kromme te nemen tussen twee hoekpunten van \({\displaystyle D}\) wanneer de twee vlakken in \({\displaystyle A}\) waar zij uit zijn genomen tegen elkaar liggen, en voor ieder hoekpunt van \({\displaystyle A}\) als zijvlak van \({\displaystyle D}\) een mogelijk gekromd oppervlak te nemen dat door een gesloten keten van ribben van \({\displaystyle D}\) wordt begrensd. Bij een veelvlak dat vervormbaar is tot een bol wordt dit extra overzichtelijk als het in gedachte wordt toegepast na deze vervorming, omdat het dan lokaal om een tweedimensionale situatie gaat.

Wiskundige dualiteit wordt soms ook reciprociteit of polariteit genoemd.


Constructie

Voor een uniform veelvlak kan een zijde van het duale veelvlak met behulp van de Dorman-Luke-constructie worden gevonden. Dit wordt aan de hand van het volgende voorbeeld verduidelijkt.

De zijde van de rombische dodecaëder, de duale vorm van de kuboctaëder, wordt als volgt geconstrueerd.

DormanLuke.png
  • De middens A, B, C en D van de ribben rondom één hoekpunt van het veelvlak worden met elkaar verbonden. De ontstane figuur ABCD is een vlakke figuur.
  • Construeer de omgeschreven cirkel van ABCD.
  • Trek de raaklijnen aan deze cirkel in de punten A, B, C en D.
  • De raaklijnen snijden elkaar in de punten E, F, G en H .
  • De figuur EFGH is een nieuwe vlakke figuur.
  • Deze figuur vormt een zijvlak van het duale veelvlak.

Websites





Bron


Staat van informatie: 20.11.2021 06:29:54 CET

Bron: Wikipedia (Auteurs [Geschiedenis])    Licentie van de tekst: CC-BY-SA-3.0. Auteurs en licenties van de afzonderlijke afbeeldingen en media zijn te vinden in het bijschrift of kunnen worden getoond door op de afbeelding te klikken.

Veranderingen: Ontwerp-elementen werden herschreven. Wikipedia-specifieke links (zoals "Redlink", "Edit-Links"), kaarten, navigatievakken werden verwijderd. Ook enkele sjablonen. Pictogrammen zijn vervangen door andere pictogrammen of verwijderd. Externe links hebben een extra icoon gekregen.

Belangrijke opmerking Aangezien de gegeven inhoud op het gegeven moment automatisch van Wikipedia werd overgenomen, was en is een handmatige controle niet mogelijk. Daarom geeft WikiFox.org geen garantie voor de juistheid en actualiteit van de inhoud. Mochten er intussen onjuistheden in de gegevens voorkomen of fouten in de weergave zijn gemaakt, dan verzoeken wij u contact met ons op te nemen: E-mail.
Zie ook: Afdruk & Privacy policy.